Enhancement of seed oil content by expression of glycerol-3-phosphate acyltransferase genes.
نویسندگان
چکیده
Arabidopsis thaliana was transformed with a plastidial safflower glycerol-3-phosphate acyltransferase (GPAT) and an Escherichia coli GPAT. The genes were used directly and in modified forms with, as applicable, the plastidial targeting sequence removed, and with an endoplasmic reticulum targeting sequence added. Seeds of plants transformed using only the vector were indistinguishable in oil content from wild-type control plants. All other gene constructs increased seed oil content. The unmodified safflower gene (spgpat) produced oil increases ranging from 10 to 21%. On average, the greatest increase (+22%) was observed in seeds of transformants carrying the spgpat with the targeting peptide removed. The E. coli plsB gene increased seed oil content by an average of 15%.
منابع مشابه
Glycerol-3-phosphate acyltransferase 4 is essential for the normal development of reproductive organs and the embryo in Brassica napus
The enzyme sn-glycerol-3-phosphate acyltransferase 4 (GPAT4) is involved in the biosynthesis of plant lipid poly-esters. The present study further characterizes the enzymatic activities of three endoplasmic reticulum-bound GPAT4 isoforms of Brassica napus and examines their roles in the development of reproductive organs and the embryo. All three BnGPAT4 isoforms exhibited sn-2 acyltransferase ...
متن کاملExpression of Mouse MGAT in Arabidopsis Results in Increased Lipid Accumulation in Seeds
Worldwide demand for vegetable oil is projected to double within the next 30 years due to increasing food, fuel, and industrial requirements. There is therefore great interest in metabolic engineering strategies that boost oil accumulation in plant tissues, however, efforts to date have only achieved levels of storage lipid accumulation in plant tissues far below the benchmark to meet demand. M...
متن کاملThe acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of Arabidopsis.
Suberin and cutin are fatty acid- and glycerol-based plant polymers that act as pathogen barriers and function in the control of water and solute transport. However, despite important physiological roles, their biosynthetic pathways, including the acyl transfer reactions, remain hypothetical. We report the characterization of two suberin mutants (gpat5-1 and gpat5-2) of Arabidopsis thaliana GPA...
متن کاملTriacylglycerol biosynthesis and gene expression in microspore-derived cell suspension cultures of oilseed rape
developing seeds of oilseed rape is fundamental to the rational development of biotechnological strategies for The effect of sucrose concentration on triacylglycerol increasing seed oil content and manipulating oil composibiosynthesis and associated gene expression was tion. In oilseeds, the biosynthesis of TAG in developing examined in a microspore-derived cell suspension culseeds is catalysed...
متن کاملThe Peanut (Arachis hypogaea L.) Gene AhLPAT2 Increases the Lipid Content of Transgenic Arabidopsis Seeds
Lysophosphatidic acid acyltransferase (LPAT), which converts lysophosphatidic acid (LPA) to phosphatidic acid (PA), catalyzes the addition of fatty acyl moieties to the sn-2 position of the LPA glycerol backbone in triacylglycerol (TAG) biosynthesis. We recently reported the cloning and temporal-spatial expression of a peanut (Arachis hypogaea) AhLPAT2gene, showing that an increase in AhLPAT2 t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society transactions
دوره 28 6 شماره
صفحات -
تاریخ انتشار 2000